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Abstract— Noise pollution is a growing concern in urban and 

campus environments, necessitating efficient and accurate 

detection of noise sources. This study presents the design and 

implementation of an enhanced noise source detection system 

utilizing classical graph traversal algorithms, such as Breadth-

First Search (BFS), Depth-First Search (DFS), and the A* search 

algorithm. The system models the environment as a grid-based 

graph, where each node represents a spatial location with 

associated noise levels, and integrates real-time audio processing 

for dynamic updates. Through comprehensive experiments, the 

system demonstrates the strengths and trade-offs of each 

algorithm in terms of path optimality, computational efficiency, 

and adaptability to real-world scenarios. The results highlight the 

effectiveness of combining graph-based search strategies with 

audio analysis for robust noise source localization. This approach 

provides a scalable foundation for future developments in 

environmental monitoring and smart city applications. 
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I.  INTRODUCTION 

In the contemporary era of rapid urbanization and 
technological advancement, environmental challenges have 
become increasingly complex and demanding of innovative 
solutions. Among these challenges, noise pollution stands as 
one of the most pervasive yet underaddressed issues affecting 
urban populations worldwide. The World Health Organization 
estimates that environmental noise pollution affects over 100 
million people in Europe alone, with similar alarming trends 
observed globally, including in rapidly developing nations like 
Indonesia where urban centers continue to expand at 
unprecedented rates. 

Modern urban environments are characterized by multiple 
simultaneous noise sources operating in complex spatial and 
temporal patterns. Vehicular traffic creates continuous low-
frequency rumble along transportation corridors, industrial 
facilities generate high-amplitude periodic noise, construction 
activities produce variable-intensity disturbances, and aircraft 
movements contribute intermittent but significant acoustic 
events. These diverse noise sources create intricate acoustic 
landscapes that require sophisticated monitoring, analysis, and 
management strategies to protect public health and maintain 
quality of life for urban residents. 

The health implications of prolonged exposure to 
environmental noise are well-documented and increasingly 
concerning. Research indicates that chronic noise exposure 
contributes to cardiovascular disease, sleep disorders, cognitive 
impairment, and psychological stress, particularly affecting 
vulnerable populations including children, elderly individuals, 
and those with pre-existing health conditions. In educational 
environments, excessive noise levels have been shown to 
significantly impact learning outcomes, concentration abilities, 
and academic performance, making noise management 
particularly critical for institutions of higher learning. 

Traditional approaches to noise source identification and 
monitoring have relied heavily on manual surveys, static 
measurement stations, and reactive complaint-based systems. 
These conventional methods suffer from significant limitations 
including high operational costs, limited spatial coverage, 
delayed response times, and inability to provide real-time 
actionable information. Static monitoring stations, while 
providing accurate point measurements, cannot effectively 
track mobile noise sources or provide comprehensive coverage 
of large urban areas. Manual surveys, though detailed, are 
labor-intensive, time-consuming, and cannot operate 
continuously to capture temporal variations in noise patterns. 

The emergence of smart city initiatives and the proliferation 
of Internet of Things (IoT) technologies have created 
unprecedented opportunities for developing automated, 
intelligent environmental monitoring systems. Graph-based 
computational approaches, particularly graph traversal 
algorithms, offer promising solutions for modeling and 
analyzing spatial relationships in complex urban noise 
environments. By representing urban spaces as mathematical 
graphs where nodes correspond to measurement points and 
edges represent spatial connectivity or acoustic propagation 
paths, classical computer science algorithms can be adapted 
and applied to solve real-world environmental challenges with 
remarkable efficiency and accuracy. 

Indonesia, as a rapidly developing archipelagic nation with 
significant urban centers including Jakarta, Surabaya, 
Bandung, and Medan, faces particular challenges related to 
noise pollution management. The country's Ministry of 
Environment and Forestry reports that urban noise levels 
frequently exceed World Health Organization recommended 
limits, particularly during peak traffic hours, in industrial 
zones, and near major transportation hubs including airports 
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and seaports. The rapid economic growth and increasing 
urbanization have intensified these challenges, creating urgent 
needs for systematic, technology-driven approaches to 
environmental noise management. 

Educational institutions such as Institut Teknologi Bandung 
(ITB) serve as representative microcosms of urban 
environments where effective noise management is essential 
for optimal learning, research, and academic activities. 
University campuses typically feature diverse noise sources 
including vehicular traffic, construction activities, HVAC 
systems, and social gatherings, making them ideal 
environments for developing and testing noise source detection 
technologies. The student population's familiarity with 
technology and data-driven approaches also provides 
opportunities for participatory monitoring and community 
engagement in environmental management initiatives. 

Recent advances in computational algorithms, particularly 
in the domain of graph theory and pathfinding, have 
demonstrated remarkable potential for spatial optimization 
problems. Breadth-First Search (BFS) algorithms provide 
comprehensive exploration capabilities with guaranteed 
optimal solutions for unweighted graphs, making them suitable 
for scenarios requiring exhaustive noise source identification. 
Depth-First Search (DFS) algorithms offer memory-efficient 
exploration strategies that can be particularly effective for 
hierarchical or tree-like urban structures. The A* (A-star) 
algorithm combines the optimality guarantees of BFS with 
heuristic-driven efficiency, potentially providing superior 
performance for real-time applications where computational 
resources are constrained. 

The integration of real-time audio processing capabilities 
with classical graph traversal algorithms represents a novel 
approach to environmental monitoring that bridges theoretical 
computer science with practical environmental engineering. 
Modern digital signal processing techniques enable real-time 
analysis of acoustic characteristics including frequency content, 
amplitude variations, and temporal patterns, providing rich data 
streams that can inform intelligent decision-making algorithms. 
Java's robust audio processing APIs and cross-platform 
compatibility make it an ideal platform for developing 
deployable environmental monitoring solutions that can 
operate across diverse hardware and operating system 
environments. 

This research addresses the critical intersection of 
environmental monitoring needs and computational algorithm 
capabilities by developing, implementing, and evaluating a 
comprehensive noise source detection system based on graph 
traversal algorithms. The study makes several significant 
contributions to both environmental monitoring and 
computational algorithm research domains. First, it provides 
detailed implementation and performance analysis of three 
fundamental graph traversal algorithms specifically adapted for 
environmental noise source detection applications. Second, it 
integrates real-time audio processing capabilities with classical 
search algorithms, enabling practical deployment in dynamic 
urban environments. Third, it develops both console-based and 
graphical user interface implementations to accommodate 
different user preferences and deployment scenarios. Fourth, it 

evaluates algorithm performance under various simulated 
urban noise scenarios, providing empirical evidence for 
algorithm selection in different environmental contexts. 

The primary research objectives include (1) implementing 
and optimizing BFS, DFS, and A* algorithms for spatial noise 
source detection in grid-based urban environment models, (2) 
integrating real-time audio processing capabilities to enable 
practical deployment with actual environmental audio data, (3) 
developing user-friendly interfaces that facilitate both research 
applications and practical field deployment, (4) conducting 
comprehensive performance evaluation to identify optimal 
algorithm selection criteria for different noise source scenarios, 
and (5) providing open-source implementation that enables 
further research and development in computational 
environmental monitoring. 

The significance of this work extends beyond academic 
research to practical applications in smart city development, 
environmental regulation compliance, public health protection, 
and urban planning optimization. As cities worldwide continue 
to grow and environmental challenges intensify, automated 
monitoring systems like the one developed in this research will 
become increasingly essential for maintaining sustainable, 
livable urban environments. The combination of efficient 
algorithms, real-time processing capabilities, and accessible 
user interfaces positions this system as a valuable foundation 
for next-generation environmental monitoring infrastructure 
that can adapt to evolving urban needs and technological 
capabilities. 

II. BASIC THEORY 

A. Sound and Noise Source 

First Sound is a mechanical wave that propagates through 
air or other media by creating pressure variations. In the 
context of environmental monitoring and urban planning, noise 
pollution has become a significant concern that affects public 
health and quality of life. Noise source detection refers to the 
systematic identification and localization of sound-generating 
sources within a given environment. This process involves 
analyzing acoustic signals to determine their origin points, 
intensity levels, and characteristics. The importance of noise 
source detection extends beyond simple environmental 
monitoring; it plays a crucial role in urban planning, industrial 
safety, and public health management. 

In digital noise source detection systems, the environment 
is typically modeled as a discrete grid where each point 
represents a potential location that can generate or transmit 
sound. Each grid point, or node, contains acoustic properties 
such as noise level, source type, and spatial coordinates. The 
noise level at any given point is quantified using a normalized 
scale, typically ranging from 0.0 to 1.0, where higher values 
indicate greater acoustic intensity. A threshold value, 
commonly set at 0.7, is used to distinguish between regular 
ambient noise and significant noise sources that require 
attention. This threshold-based approach allows for efficient 
classification of acoustic environments and facilitates 
automated decision-making in noise management systems. 
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The spatial relationship between noise sources and their 
surrounding environment is fundamental to understanding 
acoustic propagation patterns. Sound waves follow the inverse 
square law, where intensity decreases proportionally to the 
square of the distance from the source. This principle is 
mathematically expressed as 

 
(1) 

where I represents intensity, P is the source power, and r is the 
distance from the source.  

Modern noise detection systems often incorporate real-time 
audio processing capabilities to enhance their effectiveness. 
Audio signals are typically sampled at high frequencies, such 
as 44.1 kHz (CD quality), and converted into digital format for 
analysis. The Root Mean Square (RMS) level calculation, 
given by  

 
(2) 

where x represents individual audio samples and N is the total 
number of samples, provides a measure of the signal's average 
power. This RMS value is then normalized to a 0-1 scale to 
facilitate integration with grid-based detection algorithms. 
Advanced systems may also employ frequency analysis to 
distinguish between different types of noise sources, such as 
traffic noise (typically low-frequency), construction noise 
(broadband with high energy), and aircraft noise (characterized 
by specific frequency patterns). 

B. Graph Theory and Spatial Representation 

Graph theory provides the mathematical foundation for 
representing spatial environments in noise source detection 
systems. In this context, a graph G = (V, E) consists of a set of 
vertices V representing spatial locations and a set of edges E 
representing connections or relationships between these 
locations. For noise source detection applications, the 
environment is typically modeled as a grid graph where each 
cell represents a potential acoustic measurement point. This 
grid-based approach offers several advantages, including 
uniform spatial resolution, simplified path calculation, and 
efficient algorithmic processing. 

In a two-dimensional grid representation, each node is 
characterized by its coordinates (x, y) and associated acoustic 
properties. The connectivity between nodes follows a 
neighborhood pattern, typically employing 4-connectivity 
where each internal node connects to its immediate neighbors 
(up, down, left, right). This connectivity pattern ensures that 
sound propagation paths can be traced through adjacent cells, 
providing a realistic approximation of how acoustic waves 
travel through space. The adjacency relationships are crucial 
for pathfinding algorithms, as they define the valid moves that 
can be made when searching for noise sources. 

The grid size significantly impacts both the accuracy and 
computational complexity of the detection system. A 5×5 grid, 
containing 25 nodes, provides a manageable environment for 

algorithm demonstration while maintaining sufficient 
complexity to showcase different search strategies. Each node 
in the grid stores multiple attributes including its unique 
identifier (0-24 for a 5×5 grid), spatial coordinates, current 
noise level, noise source status, and connectivity information. 
The node identifier follows a row-major ordering scheme 
where node ID = row × grid_size + column, facilitating 
efficient indexing and neighbor calculation. 

Graph traversal algorithms operate on this spatial 
representation by systematically visiting nodes to locate 
acoustic sources. The choice of traversal strategy significantly 
affects both the efficiency and effectiveness of the detection 
process. The graph structure also supports the calculation of 
path costs, which can incorporate factors such as physical 
distance, acoustic attenuation, and environmental obstacles. 
This cost information is particularly important for optimization 
algorithms that seek to find the most efficient routes to detected 
noise sources. 

C. Breadth-First Search (BFS) Algorithm 

Breadth-First Search is a fundamental graph traversal 
algorithm that explores vertices in order of their distance from 
the starting point. In the context of noise source detection, BFS 
provides a systematic approach to searching for acoustic 
sources by examining all nodes at distance k before exploring 
nodes at distance k+1. This level-by-level exploration pattern 
ensures that the algorithm discovers the nearest noise sources 
first, making it particularly suitable for applications where 
proximity to the detection origin is prioritized. 

The BFS algorithm maintains a queue data structure to 
manage the order of node exploration. Starting from an initial 
detection point, typically node 0 in a grid-based system, the 
algorithm adds neighboring nodes to the queue and processes 
them in First-In-First-Out (FIFO) order. This approach 
guarantees that all nodes at distance d are visited before any 
node at distance d+1, resulting in optimal path length for 
unweighted graphs. The algorithm's time complexity is O(V + 
E), where V represents the number of vertices and E the 
number of edges, making it highly efficient for moderately-
sized detection grids. 

One of the key advantages of BFS in noise source detection 
is its ability to find the shortest path between the starting point 
and any discovered noise source. This property is particularly 
valuable when rapid response to detected noise sources is 
required, such as in industrial safety applications or automated 
noise control systems. The algorithm maintains a parent array 
that tracks the path from the source to each visited node, 
enabling complete path reconstruction once a noise source is 
located. The path length represents the minimum number of 
steps required to reach the noise source from the detection 
origin. 

The BFS implementation for noise source detection 
includes several enhancements beyond basic graph traversal. 
The algorithm maintains a visited set to prevent infinite loops 
and redundant exploration, while also tracking the total number 
of nodes visited for performance analysis. When a noise source 
is detected (indicated by a noise level exceeding the threshold 
value), the algorithm records the source location and can 
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optionally continue searching to identify all reachable noise 
sources. This comprehensive search capability provides a 
complete picture of the acoustic environment within the 
detection range. 

D. Depth-First Search (DFS) Algorithm 

Depth-First Search represents an alternative graph traversal 
strategy that explores as far as possible along each branch 
before backtracking. Unlike BFS's breadth-wise exploration, 
DFS follows a depth-wise approach that can be particularly 
effective in certain noise detection scenarios, especially when 
the acoustic environment has a tree-like or hierarchical 
structure. The algorithm's recursive nature makes it 
conceptually straightforward to implement and understand, 
while its stack-based memory usage can be more efficient in 
environments with limited memory resources. 

The DFS algorithm can be implemented either recursively 
or iteratively using an explicit stack data structure. In noise 
source detection applications, the recursive implementation 
offers cleaner code structure and natural backtracking behavior. 
Starting from the initial detection point, the algorithm selects 
an unvisited neighbor and recursively explores its subtree 
before returning to explore other neighbors. This exploration 
pattern means that DFS may discover distant noise sources 
before nearer ones, depending on the graph structure and the 
order in which neighbors are processed. 

One significant characteristic of DFS in noise source 
detection is its path-finding behavior. While DFS does not 
guarantee the shortest path to a noise source, it can sometimes 
find paths more quickly than BFS, particularly in environments 
where noise sources are located along the first explored branch. 
The algorithm's space complexity is O(h), where h represents 
the maximum depth of the search tree, which can be 
significantly lower than BFS's O(w) space complexity, where 
w is the maximum width of the search tree. 

The DFS implementation maintains a visited set to track 
explored nodes and a parent mapping to enable path 
reconstruction. When a noise source is detected, the algorithm 
can immediately trace back through the parent relationships to 
determine the path from the origin to the source. However, this 
path may not be optimal in terms of length or travel cost. The 
algorithm's performance in noise detection applications often 
depends on the specific layout of the acoustic environment and 
the distribution of noise sources within the search space. 

E. A* (A-Star) Search Algorithm 

The A* algorithm represents a sophisticated best-first 
search strategy that combines the guaranteed optimality of BFS 
with the efficiency of informed search. In noise source 
detection applications, A* uses both the actual cost from the 
starting point (g-cost) and a heuristic estimate of the cost to 
reach the goal (h-cost) to guide its search process. This dual-
cost approach enables the algorithm to find optimal paths while 
significantly reducing the number of nodes explored compared 
to uninformed search methods. 

The A* algorithm maintains two key data structures, an 
open set (typically implemented as a priority queue) containing 

nodes to be evaluated, and a closed set containing nodes that 
have been fully processed. Each node in the search process is 
associated with three cost values, g(n) representing the actual 
cost from the start to node n, h(n) representing the heuristic 
estimate from node n to the goal, and f(n) = g(n) + h(n) 
representing the total estimated cost of the path through node n. 
The algorithm always selects the node with the lowest f-cost 
for expansion, ensuring that the most promising paths are 
explored first. 

For noise source detection, the heuristic function typically 
employs the Euclidean distance to the nearest known or 
suspected noise source. This heuristic is both admissible (never 
overestimates the true cost) and consistent (satisfies the triangle 
inequality), ensuring that A* finds optimal solutions. The 
distance calculation  

 
(3) 

provides a lower bound on the actual path cost, guiding the 
search toward promising regions of the acoustic environment. 

The A* algorithm's effectiveness in noise source detection 
is particularly evident when dealing with complex 
environments containing obstacles or varying acoustic 
properties. The algorithm can incorporate additional factors 
into its cost calculations, such as signal attenuation through 
different materials or preferential paths through low-noise 
corridors. When multiple noise sources exist in the 
environment, A* typically focuses on finding the path to the 
nearest source, making it highly efficient for priority-based 
response systems. The algorithm's time and space complexity 
depend on the quality of the heuristic function, with better 
heuristics leading to more focused searches and reduced 
computational requirements. 

III. DESIGN AND IMPLEMENTATION 

A. Abbreviations and Acronyms 

The noise source detection problem in urban environments 
presents significant challenges that require systematic 
approaches for effective identification and localization of 
acoustic sources. In densely populated areas such as university 
campuses, residential neighborhoods, and industrial zones, 
multiple noise sources can simultaneously contribute to the 
overall acoustic environment, making it difficult to isolate and 
identify specific sources of concern. Traditional manual 
inspection methods are time-consuming, labor-intensive, and 
often inadequate for covering large areas or providing real-time 
monitoring capabilities. 

The complexity of noise source detection increases when 
considering factors such as signal attenuation, environmental 
obstacles, and the temporal variability of noise sources. 
Different types of noise sources exhibit distinct characteristics, 
such as traffic noise typically presents consistent low-
frequency patterns, construction noise generates high-intensity 
broadband signals with intermittent peaks, and aircraft noise 
produces characteristic frequency sweeps with predictable 
temporal patterns. Understanding these characteristics is crucial 
for developing effective detection algorithms that can 
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differentiate between various source types and prioritize 
response actions accordingly. 

Modern noise detection systems must address several key 
requirements such as real-time processing capabilities for 
immediate response to acoustic events, scalability to handle 
large monitoring areas, accuracy in source localization to 
enable targeted interventions, and adaptability to different 
environmental conditions and noise source types. The 
integration of graph-based search algorithms with acoustic 
signal processing provides a promising approach to meet these 
requirements while maintaining computational efficiency and 
practical implementation feasibility. 

The proposed system models the monitoring environment 
as a discrete grid where each cell represents a potential 
measurement point equipped with acoustic sensing capabilities. 
This grid-based approach offers several advantages including 
uniform spatial resolution, simplified path calculation for 
response routing, and efficient algorithmic processing. The 
system threshold of 0.7 (on a normalized 0-1 scale) for noise 
source classification has been determined through empirical 
analysis to provide optimal balance between sensitivity and 
false positive reduction, ensuring that only significant acoustic 
events trigger detection algorithms. 

B. System Architecture and Design Framework 

 
Fig 1. System Architecture of Enhanced Noise Source Detection 

 

The Enhanced Noise Source Detection System follows a 
modular architecture that integrates classical graph search 
algorithms with modern audio processing capabilities. The 
system architecture, illustrated in Fig. 1, consists of 
fourIprimary components, there are the Audio Processor 
Module, Graph Representation Module, Algorithm Search 
Engine, and User Interface Module. Each component is 
designed to operate independently while maintaining seamless 
data flow and communication protocols. 

The Audio Processing Module serves as the primary 
interface between the physical acoustic environment and the 
digital detection system. This module implements real-time 
audio capture using Java's Sound API, supporting multiple 
input sources including live microphone feeds, pre-recorded 
audio files, and simulated acoustic environments. The module 
performs Root Mean Square (RMS) level calculations using the 
formula (2), where x represents individual audio samples and N 
is the total number of samples. Audio data is sampled at 44.1 
kHz with 16-bit resolution, providing sufficient quality for 
noise level analysis while maintaining computational 
efficiency. 

The Graph Representation Module transforms the physical 
monitoring area into a mathematical graph structure suitable 
for algorithmic processing. The system employs a 5×5 grid 
topology, creating 25 nodes with unique identifiers following 

row-major ordering (ID = row × grid_size + column). Each 
node maintains comprehensive state information including 
spatial coordinates (x, y), current noise level, noise source 
status, neighbor connectivity list, audio level data, and source 
type classification. The connectivity pattern follows 4-
adjacency rules, where each internal node connects to its 
immediate neighbors (up, down, left, right), ensuring realistic 
representation of sound propagation paths. 

The Algorithm Engine implements three distinct search 
strategies, there are Breadth-First Search (BFS), Depth-First 
Search (DFS), and A* search algorithm. Each algorithm is 
optimized for the noise detection domain while maintaining 
their fundamental characteristics. BFS ensures shortest path 
discovery to the nearest noise source, DFS provides memory-
efficient exploration suitable for resource-constrained 
environments, and A* combines optimality guarantees with 
informed search efficiency through distance-based heuristics. 
The engine maintains comprehensive performance metrics 
including nodes visited, path length, sources found, and 
computational cost for comparative analysis. 

C. Algorithm Implementation and Optimization 

The implementation of graph search algorithms for noise 
source detection requires careful consideration of domain-
specific requirements and optimization opportunities. The BFS 
implementation utilizes a queue-based approach with FIFO 
processing order, ensuring level-by-level exploration of the 
grid environment. The algorithm maintains a visited set to 
prevent redundant node exploration and a parent mapping to 
enable complete path reconstruction once noise sources are 
identified. When multiple noise sources exist within the search 
space, BFS guarantees discovery of the nearest source first, 
making it ideal for emergency response scenarios where rapid 
localization is critical. 

The DFS implementation employs recursive traversal with 
stack-based memory management, providing depth-first 
exploration of potential noise source locations. This approach 
can be particularly effective when noise sources are distributed 
along specific paths or when memory constraints limit the 
feasible search scope. The recursive nature of DFS enables 
natural backtracking behavior, allowing the algorithm to 
explore alternative branches when dead ends are encountered. 
Performance optimization includes tail recursion elimination 
and iterative deepening for memory-constrained environments. 

The A* implementation represents the most sophisticated 
search strategy, incorporating both actual path cost (g-cost) and 
heuristic estimates (h-cost) to guide exploration toward 
promising regions. The heuristic function employs Euclidean 
distance calculation (3) to the nearest known noise source, 
providing an admissible and consistent estimate that ensures 
optimal solution discovery. The algorithm maintains a priority 
queue sorted by total cost f(n) = g(n) + h(n), enabling efficient 
selection of the most promising nodes for expansion. 

D. Audio Integration and Real-Time Processing 

The integration of real-time audio processing capabilities 
represents a significant advancement in practical noise 
detection systems. The system supports three distinct audio 
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input modes, live microphone capture for real-time 
environmental monitoring, audio file analysis for post-
processing scenarios, and simulated audio environments for 
testing and demonstration purposes. Each mode implements 
specific processing pipelines optimized for their respective use 
cases while maintaining consistent output formats for 
algorithm integration. 

Real-time microphone processing utilizes Java's 
TargetDataLine API to capture audio streams at 44.1 kHz 
sampling rate with 16-bit resolution. The system processes 
audio in 1024-byte buffers, updating every 100 milliseconds to 
provide responsive feedback while maintaining computational 
efficiency. Audio level calculation employs RMS analysis with 
normalization to a 0-1 scale, where values above 0.7 trigger 
noise source classification. The system supports dynamic 
source type classification based on frequency analysis and 
amplitude patterns, enabling differentiation between traffic 
noise (low-frequency, consistent), construction noise 
(broadband, high-amplitude), and aircraft noise (frequency 
sweeps, temporal patterns). 

Audio file processing supports standard formats including 
WAV, AIFF, and AU through Java's AudioSystem API. The 
system analyzes complete audio files to extract maximum 
amplitude levels and frequency characteristics, then maps these 
values to grid locations based on user-defined spatial 
relationships or automatic distribution algorithms. This 
capability enables integration with existing audio monitoring 
infrastructure and supports batch processing of historical 
acoustic data for trend analysis and pattern recognition. 

The simulated audio environment feature provides 
controlled testing scenarios with predefined noise source types 
and locations. This mode generates realistic acoustic patterns 
including traffic noise at grid position (1,1) with 80% intensity, 
construction noise at position (2,2) with 90% intensity, and 
aircraft noise at position (3,3) with 85% intensity. Additional 
ambient noise is distributed across remaining grid locations 
using randomized values below the detection threshold, 
creating a comprehensive test environment for algorithm 
validation and performance comparison. 

E. User Interface Design and Visualization 

 
Fig 2. Graphical User Interface Design and Visualization 

 

The graphical user interface design prioritizes intuitive 
operation and comprehensive information display while 
maintaining visual clarity for complex acoustic data. The main 
interface, illustrated in Fig. 2, employs a dual-panel layout with 

grid visualization on the left and detailed results display on the 
right. This arrangement enables users to simultaneously 
observe spatial noise distribution and algorithm performance 
metrics, facilitating comprehensive analysis of detection 
results. 

The grid visualization component implements color-coded 
representation of noise levels and source types, using a 
sophisticated visual encoding system. Noise sources are 
distinguished by color and type-specific indicators, traffic noise 
appears in red-orange (#FF4500), construction noise in crimson 
(#DC143C), aircraft noise in deep pink (#FF1493), and generic 
noise sources in standard red (#FF0000). Non-source nodes use 
gradated colors from light gray (no noise) through yellow (low 
noise) to orange (high noise), providing immediate visual 
feedback about acoustic intensity distribution across the 
monitoring area. 

Interactive path highlighting enables users to visualize 
algorithm-discovered routes from the starting position to 
detected noise sources. Each algorithm employs distinct path 
colors there are BFS paths appear in blue, DFS paths in green, 
and A* paths in magenta, allowing direct comparison of 
different search strategies. Path visualization includes 
directional arrows and step numbering to clarify traversal order 
and facilitate understanding of algorithm behavior in different 
scenarios. 

The control panel integrates algorithm execution buttons 
with audio processing controls in a unified interface. Algorithm 
controls include individual buttons for BFS, DFS, and A* 
execution, plus an environment reset function for generating 
new test scenarios. Audio controls provide access to 
microphone activation, audio file loading, simulated 
environment generation, and audio monitoring termination. 
Real-time audio level display includes both numerical 
percentage values and graphical progress bars, ensuring users 
can monitor system responsiveness and input quality. 

F. Performance Optimization and Scalability Considerations 

The system implementation incorporates several 
optimization strategies to ensure efficient performance across 
different deployment scenarios and scalability requirements. 
Memory management optimization includes efficient data 
structure selection, with HashMap implementations for node 
storage providing O(1) average-case access time, and ArrayList 
implementations for neighbor lists offering optimal sequential 
access patterns. The system employs lazy initialization for 
expensive operations and implements object pooling for 
frequently created temporary objects to minimize garbage 
collection overhead. 

Algorithmic optimization focuses on reducing unnecessary 
computation while maintaining result accuracy. The BFS 
implementation employs early termination when the first noise 
source is discovered, reducing average-case complexity for 
single-source scenarios. DFS optimization includes iterative 
deepening limits to prevent excessive memory usage in 
pathological cases, while A* optimization implements tie-
breaking strategies and dynamic heuristic adjustment to 
improve search efficiency in complex environments. 
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The modular architecture supports horizontal scaling 
through component distribution and parallel processing 
implementation. The audio processing module can operate 
independently on dedicated hardware, streaming processed 
results to multiple algorithm engines for concurrent analysis. 
Grid partitioning enables distribution of large monitoring areas 
across multiple system instances, with coordination protocols 
ensuring consistent global state management and result 
aggregation. 

Future scalability enhancements include database 
integration for persistent storage of historical acoustic data, 
network communication protocols for distributed sensor 
integration, and machine learning modules for adaptive 
threshold adjustment and pattern recognition. The current 
implementation provides foundation architecture capable of 
supporting these advanced features through well-defined 
interfaces and modular component design. 

IV. RESULTS AND DISCUSSION 

 
Fig 3. Initial Grid Visualization of Noise Levels 

Fig. 3 shows the initial state of the 5x5 grid environment 

before any detection algorithm is executed. Each cell 

represents a node with its corresponding noise level, indicated 

by the number inside the cell. The color coding and legend at 

the bottom left clarify the type and intensity of noise at each 

node: red for traffic noise, orange for construction, magenta 

for aircraft noise, and yellow to gray for generic or ambient 

noise levels. This visualization provides a comprehensive 

overview of the simulated acoustic environment, highlighting 

the spatial distribution of noise sources and background noise 

prior to algorithmic analysis. 

 

 
Fig 4. BFS Algorithm Result Visualization 

Fig. 4 presents the result after running the Breadth-First 

Search (BFS) algorithm. The grid displays the path discovered 

by BFS to the nearest noise sources, with the visited nodes and 

detected sources clearly marked. The right panel summarizes 

the algorithm’s performance, including the number of nodes 

visited, the total noise sources found, their locations, and the 

path length to the nearest source. This result demonstrates 

BFS’s ability to systematically explore the environment and 

efficiently identify all reachable noise sources. 

 

 
Fig 5. DFS Algorithm Result Visualization 

Fig. 5 illustrates the outcome of the Depth-First Search (DFS) 

algorithm. The grid highlights the path taken by DFS, which 

may differ from BFS in terms of traversal order and path 

length. The right panel details the nodes visited, the noise 

sources detected, and the path length to the nearest source. 

DFS explores the environment by delving deep into one 

branch before backtracking, which can result in longer or less 

optimal paths compared to BFS, as reflected in the path length 

and node visitation statistics. 
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Fig 6. A* Algorithm Result Visualization 

Fig. 6 shows the result of the A* search algorithm. The grid 

highlights the optimal path found by A* to the nearest noise 

source, leveraging heuristic information (Euclidean distance) 

to guide the search efficiently. The right panel reports the 

number of nodes visited, the noise sources found, the path 

taken, and the total cost. A* typically visits fewer nodes and 

finds the shortest or most cost-effective path, demonstrating its 

advantage in environments where heuristic guidance is 

effective. 

 

 
Fig 7. Real Time Audio Integration Result 

Fig. 7 demonstrates the system’s real-time audio integration 

capability. When the microphone is activated and a loud sound 

(such as shouting) is detected, the grid updates dynamically to 

reflect the new noise levels and sources. The audio level bar at 

the bottom shows the detected intensity, and the grid 

visualization responds in real time. This feature validates the 

system’s ability to process live audio input and immediately 

update the noise detection results, making it suitable for real-

world monitoring scenarios. 

 

 

Fig 8. Audio File Analysis Result (traffic.wav) 

Fig. 8 displays the result of analyzing a pre-recorded audio file 

(traffic.wav). The system successfully loads and processes the 

file, detecting multiple noise sources and updating the grid 

accordingly. The right panel lists the detected noise types, 

their locations, and intensity levels. This result highlights the 

system’s flexibility in handling both real-time and offline 

audio data, enabling comprehensive noise source detection 

from various input modalities. 

V. CONCLUSION 

This research presents the design, implementation, and 
evaluation of an enhanced noise source detection system based 
on classical graph traversal algorithms such as, Breadth-First 
Search (BFS), Depth-First Search (DFS), and the A* 
algorithm. By representing the monitored environment as a 
grid-based graph, each node encapsulates spatial coordinates, 
noise levels, and source classification, enabling a structured 
and systematic approach to noise detection. The integration of 
real-time audio processing, including both live microphone 
input and audio file analysis, allows the system to dynamically 
update noise levels and accurately reflect changing acoustic 
conditions 

Experimental results demonstrate that each algorithm offers 
distinct advantages and trade-offs. BFS consistently identifies 
the shortest path to the nearest noise source, making it suitable 
for scenarios where rapid response is critical. DFS, while 
potentially less optimal in path length, provides a memory-
efficient exploration strategy and can be advantageous in 
environments with deep or hierarchical structures. The A* 
algorithm, leveraging heuristic information such as Euclidean 
distance, achieves a balance between optimality and 
computational efficiency, often visiting fewer nodes and 
reducing search time compared to uninformed methods. 

The system’s graphical user interface further enhances 
usability by providing intuitive grid visualizations, real-time 
feedback, and clear algorithm performance metrics. The ability 
to simulate various noise scenarios, visualize algorithm paths, 
and integrate live audio input makes the system a valuable tool 
for both educational and practical applications. The modular 
architecture ensures scalability and flexibility, allowing for 
future enhancements such as larger grid sizes, more complex 
noise propagation models, and advanced noise classification 
using machine learning techniques. 

 Beyond technical achievements, this work highlights the 
practical relevance of classical algorithmic strategies in 
addressing contemporary challenges such as environmental 
noise monitoring. The combination of graph theory, search 
algorithms, and audio signal processing creates a robust 
foundation for smart city applications, industrial safety, and 
public health initiatives. Future work may explore distributed 
sensor networks, adaptive thresholding, and predictive 
analytics to further improve detection accuracy and system 
responsiveness. 
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VIDEO LINK AT YOUTUBE 

https://youtu.be/r1hMBuC-Gjs 

APPENDIX 

Source Code: 

https://github.com/bevindav/noise-source-detection  
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